Москва
Мероприятия
Блог
Корзина
Регистрация Войти
main-bg
Блог

Искусственный интеллект в промышленности. Используй будущее уже сегодня!

Ирония так называемых больших данных заключается в том, что их легче получить, чем использовать. Любая автоматизация учета, даже частичная, создает точки для ввода и накопления различной информации. Постепенно базы данных разрастаются, дополняются различными таблицами, файловыми архивами, тоннами почтовой переписки, отчетами и многочисленными бухгалтерскими документами.

Дмитрий Карбасов

Руководитель отдела бизнес-решений и предиктивной аналитики

Почему большие данные трудно использовать?

Маркетинговые сведения, статистика производства, продаж, финансы, кадровые вопросы – по всем существенным аспектам работы ведется учет, копятся данные. Руководство компании должно иметь доступ к детальному анализу всех процессов на предприятии. Должно. Но обычно этого не происходит.

Главная системная проблема с большими данными – несогласованность. Информация может быть очень разнородной, многоуровневой и разноплановой. Вот именно в этот момент помощь и мощь искусственного интеллекта (ИИ) становится просто незаменимой.

К «традиционными» темам и направлениям применения искусственного интеллекта на предприятии относятся: статистическое управление процессами; анализ видов и последствий потенциальных отказов; анализ измерительных систем; управление ценообразованием и товарными запасами; производительное обслуживание оборудования (ТОиР – техническое обслуживание и ремонт).

Требования, предъявляемые к заказчикам

Заказчиком систем ИИ может быть любая компания, отвечающая следующим требованиям: наличие на предприятии инструментов/приборов/устройств, позволяющих обеспечивать автоматический сбор данных о работе оборудования или технологических процессах (инфраструктурная часть); наличие MES, ERP, АСУТП 1, АСУТП 2 (SCADA) или других систем учета и консолидации данных о работе оборудования или технологических процессах (источники данных); минимальная история данных о работе оборудования или технологических процессах не менее 1 года, желательная история – от 3 лет (ретро-данные); также важно, чтобы руководители осознавали необходимость нового подхода в работе с информацией и системам управления в целом.

Цели и задачи Softline как интегратора

Задача Softline как интегратора – тиражировать лучшие знания и алгоритмы в области создания систем машинного обучения, делая их каждый раз «умнее». Для каждого клиента мы тестируем созданные алгоритмы на различных платформах, подбирая в каждом конкретном случае наиболее подходящее решение. Наша цель – подобрать для компании-клиента решение, которое наилучшим образом решит его задачи и легко интегрируется в технологические процессы.

Продуктовый портфель Softline располагает рядом решений и платформ по ИИ и предиктивной аналитике: Microsoft, Deductor, Prognoz и др.

Примеры применения платформ с ИИ на практике

Оптимизация производства

  • Цель: удовлетворение потребностей и ожиданий заинтересованных сторон по качеству, срокам, объемам производства и поставок, плановой стоимости продукции.
  • Используемые технологии: сбор и анализ статистических данных о производственной системе: уровень стандартизации и соблюдения стандартов; оценка четырех факторов производства: оборудование, методы производства, человеческий фактор, материально-техническое снабжение и качество входящих материалов и сырья; статистическое управление процессами (SPC, Statistical Process Control); управление затратами на уровне единицы продукции/рабочего места.
  • Особенности: используются большие данные со всех учетных систем предприятия, из ERP, MES и других систем, в которых ведется управленческий учет, собирается информация о стоимости продукции, вопросах качества, производительности и т.п. Планирование качества и стоимости продукции очень тесно связаны, и именно статистическое управление процессами позволяет повысить надежность производства и таким образом получать гарантированный результат. Например, это может быть расчет объема производимой продукции с использованием принципа «точно вовремя». Происходит контроль всех производственных цепочек, вопросы качества продукции отслеживаются по двум группам: стоимость обеспечения соответствия и стоимость устранения несоответствий. В результате предприятие сможет рассчитать полную себестоимость каждой партии и даже единицы продукции.
  • Результат: снижение себестоимости продукции на 20-30% за счет устранения потерь в производстве и более эффективное управление качеством.

Статистическое управление процессами (наиболее известный инструмент – карты Шухарта)

  • Цель: обеспечение и поддержание характеристик технологических процессов на стабильном уровне, соответствие составных частей (продукции) установленным требованиям.
  • Используемые технологии: сбор и анализ статистических данных о производственной системе, интеграция систем и подходов в единую информационную систему предприятия.
  • Особенности: выстраиваемая цифровая модель предприятия в различных ситуациях может меняться, она гибко управляема. Методики статистического управления процессами соответствуют стандартам и ГОСТам. С точки зрения практической реализации в России этот подход пока только набирает популярность; а вот крупные зарубежные предприятия данные технологии используют уже более 65 лет.
  • Результат: комплекс решений, который позволяет эффективно управлять процессами предприятия, отслеживать каждое отклонение, и как следствие, управлять ими, совершенствуя процессы в рамках существующих ограничений.

Производительное обслуживание оборудования (ТОиР – техническое обслуживание и ремонт)

  • Цель: повышение эффективности использования оборудования за счет предупреждения и устранения потерь на протяжении всего жизненного цикла.
  • Используемые технологии: сбор и анализ статистических данных о работоспособности оборудования (износ, режимы эксплуатации). Построение цифровой модели единицы оборудования. Прогнозирования возможных отказов и периода наработки на отказ.
  • Особенности: Softline предлагает методологию, в рамках которой можно рассчитать коэффициент общей эффективности использования оборудования (OEE, Overall Equipment Efficiency). На большинстве предприятий он составляет около 50% (показатель для ЧПУ; для универсального оборудования еще меньше) – это колоссальный уровень потерь, который происходит за счет неэффективного использования оборудования, его обслуживания и ремонта.
  • Результат: рост производительности до 2 раз, сокращение затрат на ремонт и обеспечение запчастями (в среднем на 30%).

Кейс №1

Задача: По заказу крупного российского кабельного завода Softline создала нейронную сеть, которая на основе исторических данных прогнозирует спрос на производимую продукцию и оценивает вероятность ее реального заказа. 

Обработка потенциальной сделки на предприятии – процесс весьма трудоемкий и длительный – занимает несколько недель с вовлечением большого количества подразделений. Процент конвертации запроса в продажу небольшой, поэтому специалистам необходимо как можно раньше понимать, состоится сделка или нет. Помимо этого, стояла задача построить модель прогноза спроса на продукцию регулярного ассортимента и на объем необходимого сырья по всем категориям для дальнейшей оптимизации производственного цикла и процесса закупки.

Решение: Пилотный проект реализован на базе решений, поддерживающих алгоритмы машинного обучения. Наилучший результат показала нейронная сеть, обученная на подготовленной выборке. Такая система постоянно обучается без участия человека и в будущем способна делать все более точные прогнозы. По сути речь идет об искусственном интеллекте.

Результаты: Итоги реализации «пилота» свидетельствуют, что построенные модели можно применять на предприятии для прогнозирования базового объема продаж, среднесрочных объемов потребления сырья, управления складскими запасами готовой продукции.

Стала возможна экономия трудозатрат за счет перераспределения усилий менеджеров по продажам на обработку наиболее вероятных заказов и повышения ее качества в 2-3 раза.

В рамках развития проекта будет проработана возможность включения в модель дополнительных влияющих факторов, в том числе из внешних источников. Для использования в прогнозе данных воронки продаж потребуется изучить влияние ограничивающих производственных факторов на конверсию спроса в заказы.

По результатам пилотного проекта были выработаны рекомендации по использованию модели прогнозирования вероятности размещения заказа в связке с данными воронки продаж для оптимизации процессов планирования продаж.

Кейс №2

Задача: По заказу одной из крупнейших в Европе химических компаний Softline создала нейронную сеть, которая определяет алгоритм стабилизации процесса и рассчитывает экономический эффект от различных входных параметров производственного процесса

Решение: По итогам пилотного проекта создан самообучающийся алгоритм для оценки текущего производственного процесса, который выявил, что в рамках текущего состояния производства процесс статистически не управляется и не оптимально расходует ресурсы предприятия, что влечет за собой прямые финансовые потери. С помощью имитационного моделирования было выявлено, что в результате применения моделирующего алгоритма ежесуточная экономия пара может достигать 122 тонны.

Результаты: Результаты «пилота» свидетельствуют, что построенные модели можно применять на предприятии для решения следующих задач:

1. Повышение качества готовой продукции, анализ видов и последствий потенциальных отказов.

2. Минимизация простоя оборудования, анализ выхода из строя оборудования и плановый ремонт (обеспечить сбор и агрегацию информации о состоянии основных производственных фондов, формировать регламентированную основу по наработке на отказ основных рабочих мест и формировать план по текущему ремонту основных производственных фондов).

3. Устранение человеческого фактора (минимизация ошибок), контроль расходов сырья (осуществить кросс-функциональный сбор информации по всем маршрутам прохождения заказа для калькуляции себестоимости заказа и проведения план-фактного анализа отклонений).

В рамках развития проекта будет также проработана возможность включения в модель дополнительных влияющих факторов, в том числе из внешних источников и совершенствование самообучающегося алгоритма.

Мы будем рады ответить на ваши вопросы!

Обращайтесь к Дмитрию Карбасову, руководителю отдела бизнес-решений и предиктивной аналитики:

Пишите: Dmitriy.Karbasov@softlinegroup.com.

Звоните: +7 (495) 232-00-23, доб. 1449.

Новости, истории и события
Смотреть все
ПАО «СОФТЛАЙН» ОБЪЯВЛЯЕТ О РОСТЕ ПО ВСЕМ КЛЮЧЕВЫМ ПОКАЗАТЕЛЯМ ПО ИТОГАМ 2025 ГОДА
Новости

ПАО «СОФТЛАЙН» ОБЪЯВЛЯЕТ О РОСТЕ ПО ВСЕМ КЛЮЧЕВЫМ ПОКАЗАТЕЛЯМ ПО ИТОГАМ 2025 ГОДА

19.02.2026

Академия АйТи FabricaONE.AI (акционер - ГК Softline) запускает программу повышения квалификации «AI Governance в критических отраслях: от рисков и угроз к этике и доверию»
Новости

Академия АйТи FabricaONE.AI (акционер - ГК Softline) запускает программу повышения квалификации «AI Governance в критических отраслях: от рисков и угроз к этике и доверию»

18.02.2026

«Софтлайн Решения» обеспечила импортозамещенную инфраструктуру для платформы 2ГИС
Новости

«Софтлайн Решения» обеспечила импортозамещенную инфраструктуру для платформы 2ГИС

18.02.2026

Компактные промышленные лазеры компании VPG LaserONE (кластер «СФ Тех» ГК Softline) внесены в реестр Минпромторга
Новости

Компактные промышленные лазеры компании VPG LaserONE (кластер «СФ Тех» ГК Softline) внесены в реестр Минпромторга

17.02.2026

«Софтлайн Решения» (ГК Softline) получила высший партнерский статус «Системный интегратор» от «Группы Астра» по всем продуктовым направлениям
Новости

«Софтлайн Решения» (ГК Softline) получила высший партнерский статус «Системный интегратор» от «Группы Астра» по всем продуктовым направлениям

17.02.2026

От первого шага к уверенному выбору: акция  Группы «Борлас» (ГК Softline) «Определи свой уровень прочности» для новых заказчиков CAE Fidesys
Новости

От первого шага к уверенному выбору: акция Группы «Борлас» (ГК Softline) «Определи свой уровень прочности» для новых заказчиков CAE Fidesys

16.02.2026

«Софтлайн Решения» (ГК Softline) и SkyDNS расширяют сотрудничество в области информационной безопасности
Новости

«Софтлайн Решения» (ГК Softline) и SkyDNS расширяют сотрудничество в области информационной безопасности

16.02.2026

«Платформикс» и «Инферит» (кластер «СФ Тех» ГК Softline) заключили партнерское соглашение
Новости

«Платформикс» и «Инферит» (кластер «СФ Тех» ГК Softline) заключили партнерское соглашение

13.02.2026

«Софтлайн Решения» (ГК Softline) помогла машиностроительному предприятию внедрить систему управления нормативно-справочной информацией
Новости

«Софтлайн Решения» (ГК Softline) помогла машиностроительному предприятию внедрить систему управления нормативно-справочной информацией

12.02.2026

Решения СберТеха и SL Soft FabricaONE.AI (акционер — ГК Softline) повысят эффективность бизнес-процессов российских компаний
Новости

Решения СберТеха и SL Soft FabricaONE.AI (акционер — ГК Softline) повысят эффективность бизнес-процессов российских компаний

11.02.2026

Партнерство Т1 Интеграция и «Инферит» (кластер «СФ Тех» ГК Softline) укрепит устойчивость ИТ-инфраструктур российских организаций
Новости

Партнерство Т1 Интеграция и «Инферит» (кластер «СФ Тех» ГК Softline) укрепит устойчивость ИТ-инфраструктур российских организаций

11.02.2026

ПАО «Софтлайн» объявляет об успешном закрытии книги заявок по биржевым облигациям с объемом размещения 6,6 млрд рублей
Новости

ПАО «Софтлайн» объявляет об успешном закрытии книги заявок по биржевым облигациям с объемом размещения 6,6 млрд рублей

11.02.2026

Группа «Борлас» (ГК Softline) вошла в ТОП-5 крупнейших поставщиков решений из реестра отечественного ПО
Новости

Группа «Борлас» (ГК Softline) вошла в ТОП-5 крупнейших поставщиков решений из реестра отечественного ПО

10.02.2026

«Инферит ИТМен» (кластер «СФ Тех» ГК Softline) проведет онлайн-марафон защиты ИТ-инфраструктуры
Новости

«Инферит ИТМен» (кластер «СФ Тех» ГК Softline) проведет онлайн-марафон защиты ИТ-инфраструктуры

10.02.2026

ГК Softline провела экскурсию по предприятию VPG LaserONE (кластер «СФ Тех» ГК Softline) для медиа и аналитиков
Новости

ГК Softline провела экскурсию по предприятию VPG LaserONE (кластер «СФ Тех» ГК Softline) для медиа и аналитиков

10.02.2026

Производственную площадку компании VPG LaserONE (кластер «СФ Тех» ГК Softline) посетил губернатор Московской области Андрей Воробьев
Новости

Производственную площадку компании VPG LaserONE (кластер «СФ Тех» ГК Softline) посетил губернатор Московской области Андрей Воробьев

09.02.2026

«Софтлайн Решения» (ГК Softline) помогла крупной производственной компании организовать эффективное хранение конструкторской документации
Новости

«Софтлайн Решения» (ГК Softline) помогла крупной производственной компании организовать эффективное хранение конструкторской документации

09.02.2026

Infosecurity (ГК Softline) запустила «Киберчекап» – сервис оценки киберздоровья компаний
Новости

Infosecurity (ГК Softline) запустила «Киберчекап» – сервис оценки киберздоровья компаний

06.02.2026

БПЛА в 2026 году: полная классификация, типы дронов и сферы применения
Блог

БПЛА в 2026 году: полная классификация, типы дронов и сферы применения

13.02.2026

Эволюция корпоративного тестирования: как современные платформы обеспечивают прозрачность, ИИ и бесшовные интеграции
Блог

Эволюция корпоративного тестирования: как современные платформы обеспечивают прозрачность, ИИ и бесшовные интеграции

04.02.2026

Как HRM-система помогает оптимизировать HR-процессы и  снизить потери от текучести кадров
Блог

Как HRM-система помогает оптимизировать HR-процессы и снизить потери от текучести кадров

02.02.2026

Российский рынок ITAM и ITSM 2026
Блог

Российский рынок ITAM и ITSM 2026

28.01.2026

Технологические тренды 2026: мультиагентный и физический ИИ, превентивная кибербезопасность и DSLM
Блог

Технологические тренды 2026: мультиагентный и физический ИИ, превентивная кибербезопасность и DSLM

23.01.2026

ИИ-агенты: принцип работы и сценарии использования в бизнесе
Блог

ИИ-агенты: принцип работы и сценарии использования в бизнесе

16.01.2026

Аддитивные технологии: 3D-печать и 3D-принтеры от А до Я
Блог

Аддитивные технологии: 3D-печать и 3D-принтеры от А до Я

19.12.2025

Защита от DDoS‑атак: специфика подходов reverse proxy и перехвата трафика без смены A‑записей DNS
Блог

Защита от DDoS‑атак: специфика подходов reverse proxy и перехвата трафика без смены A‑записей DNS

11.12.2025

VDI: преимущества виртуальных рабочих мест и обзор российских решений
Блог

VDI: преимущества виртуальных рабочих мест и обзор российских решений

10.12.2025

Частное облако в 2026 году: главные тренды и аргументы для бизнеса
Блог

Частное облако в 2026 году: главные тренды и аргументы для бизнеса

04.12.2025

Контейнеризация файлов: как сохранить контроль над документами даже на устройствах партнеров
Блог

Контейнеризация файлов: как сохранить контроль над документами даже на устройствах партнеров

27.11.2025

Приказ ФСТЭК № 117: как выполнить новые требования к защите ГИС
Блог

Приказ ФСТЭК № 117: как выполнить новые требования к защите ГИС

25.11.2025

Российские офисные ноутбуки: на какие бюджетные модели обратить внимание в 2025 году
Блог

Российские офисные ноутбуки: на какие бюджетные модели обратить внимание в 2025 году

13.11.2025

Беспилотники как угроза: как защитить предприятие от атаки дронов
Блог

Беспилотники как угроза: как защитить предприятие от атаки дронов

05.11.2025

Smart TV: российские операционные системы и будущее рынка
Блог

Smart TV: российские операционные системы и будущее рынка

23.10.2025

Новая эра мобильных технологий: российско-корейский ответ крупным западным игрокам
Блог

Новая эра мобильных технологий: российско-корейский ответ крупным западным игрокам

20.10.2025

Облачные технологии: что это такое, виды сервисов, модели развертывания и тренды 2025
Блог

Облачные технологии: что это такое, виды сервисов, модели развертывания и тренды 2025

14.10.2025

Оснащение кабинетов физики: от макетов и датчиков до цифровых лабораторий
Блог

Оснащение кабинетов физики: от макетов и датчиков до цифровых лабораторий

10.10.2025