PERFORMANCE ANALYSIS OF PYTHON
APPLICATIONS USING INTEL" VTUNE ™ AMPLIFIER

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS™. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tune Python + native code for better Performance

Intel” VTune™ Amplifier 2018, a performance analyzer in Intel® Parallel Studio XE suite

Challenge

= Full profile of Python + native applications

] Ful [a] CPU Tim; -
CPU Time~ @‘ Viewing { Tof1 | selected stack(s)
= M 100.0% (10.809s of 10.809s)
. - . . Effective Time by Utilization Spin | Ove. EimeE demo.pylprocess slow - demo.py
= Detect inefficient runtime execution oo e

Solution

MIEEIEEEDEEG oons

& Basic Hotspots Hotsp

Groupina: | Functon / Cal Stack

Function / Call Stack

fast_encode
get_data
©_tmainCRTStartup
<module>

_call_with_frames_removed

Didle BPoor 0ok Mideal Wl Over i [U:

0.190s 0s demo.py

s Os runpy
0s <frozen importlib._box
0s Os python.exe

5 Os runpy

s 0s <frozen importlib._box

runpyd
- run. npy13
3 ‘ 0.40(75‘ Os‘ demo.py pythor up+0x1 19 - arte.
Tprocess._fast s KERNEL32.DLL dinitThunk+0x2.-
un

ntdil dIRY UserTl

Selected 1 row(s): 104035 04065 0s

= Accurately identify performance hotspots at | | ‘ i
line-level U e 28 88 s 95 08 fs B Ys 0s Vs Tgs 035 s Tos ., W [

liuk CPU Time
s Spin and .
[C1® CPU Sample

= Auto-detect mixed Python/C/C++ code and ser s
extensions i

Thread

ik Spin and ...

CPU Usage

» Focus your tuning efforts for most impact on © o
performance

s
AryThread ~ [l AnyModule [l Any Utilizatic = Show inline funct +

Auto detection and performance analysis of Python and native functions

Available in Intel® VTune™ Amplifier 2017 Beta & Intel® Parallel Studio XE 2017

Download beta at https://software.intel.com/en-us/python-profiling
Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Performance analysis of the Covariance Matrix
calculation

[x12 2 :x1x2 2 :xlxn-
N N N
X2X1 xz2 X2Xn
E N N E N

cov =

Activity #1: Run Vtune collection for Python:
set environment

1. Setup parallel studio environment:
cd ~/1ab3

source /opt/intel/parallel_studio_xe_2019/psxevars.sh intel64

Optimization Notice

Copyr gh©2017l tel Corpo n. All rights reserved.
*Other and bra dmaybllmed hppyfh

Activity #1: Run Vtune collection for Python:
start amplifier gui

1. Check the script correctness: do not forget parameters!
python3 ./lab3.py somevec 100 1000

2. Observe the output (of covariance matrix calculation)
3. Start Intel Vtune Amplifier:

ampIxe-gui

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Intel” VTune™ Amplifier XE

Feature Highlights

Basic Hot Spot Analysis (Statistical Call Graph)
= Locates the time consuming regions of your application

* Provides associated call-stacks that let you know how you got to these time
consuming regions

= Call-tree built using these call stacks

Advanced Hotspot and architecture analysis

= Based on Hardware Event-based Sampling (EBS)

» Pre-defined tuning experiments

Thread Profiling

= Visualize thread activity and lock transitions in the timeline
= Provides lock profiling capability

= Shows CPU/Core utilization and concurrency information

GPU Compute Performance Analysis
Collect GPU data for tuning OpenCL applications. Correlate GPU and CPU activities

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel” VTune™ Amplifier XE

Analysis Types (based on technology)

Software Collector Hardware Collector
Any x86 processor, any virtual, no driver Higher res., lower overhead, system wide
Basic Hotspots Advanced Hotspots

Which functions use the most time? Which functions use the most time?
Where to inline? — Statistical call

counts
Concurrency General Exploration
Tune parallelism. Where is the biggest opportunity?
Colors show number of cores used. Cache misses? Branch
mispredictions?
Locks and Waits Advanced Analysis

Tune the #1 cause of slow threaded Dig deep to tune bandwidth, cache
performance — waiting with idle cores. | misses, access contention, etc.

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3.1. Configure Amplifier activity

=1 New Project...
s Open Project...
& Open Result

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Create new project

Create a Project

Project name:

Vtune_python .
Location:
Advanced ~
/home/day1/intel/amp

User-defined environment variables:

Create Project

< >

Managed code profiling mode
Auto v

3.2 Configuring application to launch: do not forget

to add app parameters!

s &P 8B @l‘Welcome \‘ NewA... X‘

i Configure Analysis
WHERE

@ Local Host

WHAT

@ Launch Application

Specify and configure your analysis target: an application or a script to execute.
Press F1 for more details.

Application:
/home/intel/miniconda3/envs/idp/bin/python3 => |9

Application parameters:
| /home/intel/sources/vtune/vtune lab.py naive 100 1000 | o)

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hotspots Microarchitecture

Want to find out where your Want to see how efficiently
app spends time and your code is using the
optimize your algorithms? underlying hardware?

: L choose analysis type :
Basic Hotspots General

Exploration

Advanced
Hotspots

0

Memory
Consumption

®

Memory Access

Parallelism

Want to assess the compute efficiency of your

multi-threaded app?

@ @

Concurrency Locks and Waits

@

HPC
Performance
Characterization

3.3 Summary page: observer top hotspot list. Call
function

= Basic Hotspots Hotspots by CPU Usage vléwpuint (change) @ INTELVTUNE AMPLIFIER 2018
4 [EcCollection Log € Analysis Target A Analysis Type & Summary & Bottom-up & Caller/Callee & Top-down Tree ‘= Platform

Elapsed Time ~: 15.432s

CPU Time “; 15.350s
Total Thread Count 1
Paused Time : 0s

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function Module CPU Time

call_function libpython3.6m.s0.1.0 1.629s
PyObject_CallFunctionObjArgs libpython3.6m.s0.1.0 1.586s
PyUFunc_GenericFunction umath.cpython-36m-x86_64-linux-gnu.so 0.898s
PyArray_NewFromDescr multiarray.cpython-36m-x86_&4-linux-gnu.so 0.784s
<genexpr> test_cov.py 0.450s

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value,

16s
14s
12s

@l

Elapsed Time
Target Utilization

0s T T T T T T
0 10 20 30 40 50 60

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

3.4 Basic hotspots bottom up view

i Basic Hotspots Hotspots by CPU Usage viewpoint (change) & INTEL VTUNE AMPLIFIER 2018
4 [collection Log D Analysis Target A Analysis Type & Summary & Bottom-up ¢ Caller/Callee &3 Top-down Tree (= Platform - /\ Ny /';,7’ [3
suping: Module / Function / Call Stack = K|l CPU Time .
CPU Time ¥ q] | Viewing « 10of 2 » selected stackls)
Module / Function / Call Stack Effective Time by Utilization 5 Module Function (Full) Source File 95.0% (1.228s of 1.2925)

Spin Time Overhead Time

Bidle ®Poor B Ok @Iideal @ Over | 1 | libpython3.6m.so.1.0'call_function - ...
¥ libpython3.6m.s0.1.0 4.734s 02645 0s focaldisk/anaconda3/envs/idp/bin/ test_cov.py!naive+Oxch - test_cov.py:..
w call_function 1.437s D 0.192s Os libpytho... call function cevalc /localdisk/anaconda3/envs/idp/bin/| | || {ibpythond.6m.s0.1.0!all_function+0..
Ao covoy o maconded v o) U
» R _mean < PyObject_Call « mean < call_fur, 0.140s | 0s _metho... _meanla, axi _methods.py | /localdisk/anaconda3/envs/idp/bin/ | jibpython3.6m.so. 1.0k all_function+0.
» R _count_reduce_items « call_function « _n 0.084s | s _metho... _count_reduc.. _methodspy | /localdisk/anaconda3/envs/idp/bin/ | test cov.py!<r le>+0x1c1 - test_c.
» R _compile_bytecode « call_function < get_« 0.047s |)s | <frozen... _compile_byt... <frozen im... /localdisk/anaconda3/envs/idp/bin/ | ibpython3.6m.s0.1.00Py Main+0xf2b..
» R asanyarray < call_function ¢« _mean « Py 0.01é4s Os s numeric... asanyarray(a, .. numericpy | /localdisk/anaconda3/envs/idp/bin/ python3.4!main+0x16d - python.c:69
» R <module> + _PyEval_EvalCodéWithName « 0.014)s s _import... <module> _import_to... | /localdisk/anaconda3/envs/idp/bin/ libc.s0.6! it tart_main+Oxef - libc-..
» K _path_stat « call_function ¢ _path_is_mod 0012 < <frozen... _path_stat <frozen im... | /localdisk/anaconda3/envs/idp/bin/ o thon3.6! start+0x28 - lunknown s..
» R _load_unlocked 4 call_function < _find_an 0.0 s <frozen... _load_unlocked <frozen im... /localdisk/anaconda3/envs/idp/bin/
» R namedtuple « call_function « <module> € 0.008 0Os)5 _init__py namedtuple(t.. _init_py | /localdisk/anaconda3/envs/idp/bin/
B sre_parsepy 0012) flocaldisk/anaconda3/envs/idp/lib/pyt!
» libcso.6 0.012s)s Os /lib/x86_é4-linux-gnu/libc.s0.6

o: + o [Thread .

§ python3 (TID: 23261) ~/ [l Running
E ' ma CPU Time

~ g Spin and Overhead Ti..

] @ CPU Sample

+ CPU Usage

~ ma CPU Time

" s Spin and Overhead Ti...

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3.5 Source code view

& Basic Hotspots Hotshots by CPU Usage viewpoint (change) @ INTELUTUNE AMPLIFIER 2018
4 [collection Log (D Analysis Target /& Analysis Type & Summary <& Bottom-up & Caller/Callee & Top-down Tree (= Platform [test_cov.py [

Agsemh\yJ gl Lg‘ ﬁ I&J Assembly grouping: ‘Address :J ICPU Time :‘

CPU Time: Total Viewing « 10f 2 » selected stack(s)
e Source Effective Time by Utilization st 95.0% (1.2285 of 1.2925)
@idle @ Poor @0k @ Ideal @Over Ti U ibpythond.ém.so.1 0tcalfunction - .
test_cov.py!naive+Oxch - test_cov.py
libpython3.6m.s0.1.0!call_function+
test_cov.py!main+0x33 - test_cov.py:...
libpython3.6m.s0.1.0!call_function+0...
test_cov.py!<mo >+0x1c1 - test_c...
libpython3.6m.s0.1.0!Py_Main+0xf2b...
python3.6!main+0x16d - python.c:69
= libc.so.6!_i ain+0xef - libc-..
62 print(‘Calculate by Hand Naive For Loops') = python3.6! start+0x28 - [unknown s...
63 start = time.time()
64
65 #initialize results array
66 result = np.zeros((numCols, numCols), dtype=float)
67
68 # initialize norm arrays list
69 normArrays = []
70 5
71 # calculate norm arrays and populate norm arrays dict s
72 for i in range(numCols):
73 normArrays.append(np.zeros((numRows, 1), dtype=float))
74 for j in range(numRows):
75 normArrays[i][j]=fullArray(:, i][j]-np.mean(fullArray[:, i]) |]
76 |
77
78 # calculate covariance and populate results array
79 for i in range(numCols):
80 for j in range(numCols):
result[i,j) = sum(p*q for p,q in zip(normArrays[i],normArrays[j]))/(numRows)
82
83 end = time.time()
84 print(‘overall runtime = * + str(end - start))
85 print(result([:5, :5])

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Activity #4: code modification. Numpy function
substitute

77
78 # calculate covariance and populate results array
79 for i in range(numCols):
for i in range(numCols):
3 result[i,j] = sum(p*q for p,g in zip(normArrays([i],normArrays[j]))}/(numRows) 1
B2

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

4.1 Re-run the performance.

- Runin the terminal
python3 Tab3.py somevec 100 1000
Calculate by Hand Some Vectorization

overall runtime = 5.254168748855591

what could be improved further?

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Activity #5

Further vectorization and performance improvement

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5.1 Configuring application to launch:

Hotspots Microarchitecture
" " . Wapt to find out Iwhere your Want to see hcw gfﬁciently
Choose “someVec” module in the python st imes, Undering harcware?

E L choose analysis type :
Basic Hotspots General

@ Launch Application - @

Hotspots Memory Access
Specify and configure your analysis target: an application or a script to exe: Meﬁm’ow
Press F1 for more details. Consumption
Parallelism

Application:

Want to assess the compute efficiency of your
multi-threaded app?

@ @

Concurrency Locks and Waits

/opt/intel/intelpython3/bin/python3

on parameters:

vtune_lab_orig.py fomeVec 100 1000 @

HPC
Performance
Characterization

+ Use application directory as working directory

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5.2 Updated code: twice as fast.

= Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
4 Elcollection Log (O Analysis Target A Analysis Type & Summary ¢ Bottom-up & Caller/Callee &3 Top-down Tree i1 Platform AP

INTEL VTUNE AMPLIFIER 201

Elapsed Time *: 7.135s

CPU Time 71205 Naive

Total Thread Count: 1

Paused Time H

e * Elapsed Time ~: 15.432s
CPUTime 15.350s

Top Hotspots
This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance. Total Thread Count: il
Function Module CPU Time Paused Time Os
call_function libpython3.6m.s0.1.0 0.684s
PyObject_CallFunctionObjArgs libpython3.6m.s0.1.0 0.540s
PyUFunc_GenericFunction umath.cpython-36m-x86_64-linux-gnu.so 0.368s
PyUFunc_DefaultLegacylnnerLoopSelector umath.cpython-36m-x86_é4- 02965
PyArray_NewFromDescr multiarray.cpython-36m-x86_64-linux-gnu.so 0.276s

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

8190 s
E ¥
E

bs E
&
fre

4s

2

Target Utilization

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

5.3 Top down view to find the issue

& Basic Hotspots Hotspots by CPU Utilization viewpoint (change) @ INTEL VTUNE AMP!
9 A Analysis Configuration Collection Log & Summary & Bottom-up & Caller/Calleef’ & Top-down Tree Yz Platform

Grouping: Call Stack s ||E|| o -*‘ CPU Time

Function Stack CPU Time: Total ¥ /| CPU Time: Self * | Module | Function (Full) | Source File | Start Address | 2| viewing < 10165 + select

__libc_start_main 89.3% Os libc.so.6 __ libc start ... 0x20740 10.4% (0.112s of 1

main 89.3% Os | python... 'main python.c 0x400a60 libpython3.6m.so.1.0!PyE

Py_Main 89.3% 0.010s | libpyth... Py_Main main.c 0x1bb7b0 umath.cpython-36m-x86_

<module> 89.1% Os |viune_l... <module> viune_lab... 0x7efd6f48b... umath.cpython-36m-x86_

call_function 89.1% Os | libpyth... call function ceval.c 0x166370 umath.cpython-36m-x86_

main 89.1% Os | viune_l... main() viune_lab... Ox7efd6dcf1... umath.cpython-36m-x86_

call_function 89.1% Os libpyth... call_function ceval.c 0x166370 . libpython3.6m.so.1.0lcall

someVec 89.1% 0.028s vtune_l... someVec(full... viune_lab... 0x7efd6{433... " methods.py! mean+0x8

call_functio 86.6% 0.236s libpyth... call_function ceval.c 0x166370 libpython3.6m.s0.1.01PyC

array_ad 49.8% 0.020s multiar... array_add 0x3celal = fromnumeric.pylmaan+0x

17.6%| , axis,... | fromnume... | Ox7efd63a9... libpython3.6m.so.1.0lcal
- : ‘s multiar...._array_dealloc 0x21a40 me\f
array_ite 0.020s | multiar... array_item 0x3572d0 libpythona.6m.so.1.0lcal
ufunc_ge 1.6% Os umath.... ufunc_generi... 0x20640 viune_lab_orig.py!mains{
[Unknow 0.4% Os [Unknown sta... 0 libpython3.6m.so.1.0lcall
_PyDict_Lc 0.4% 0.024s libpyth... _PyDict Loa... dictobject.c Oxbde70 =l vtune_lab_orig.pyl<modu
i _bl 1K1 | - i3] Bl than Ene an 4 AL,
P: o 555 [Thread
oo R

Thread

[¥] maCPU Time

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

- 5.4 Drill down to the source view

:-‘ 8 i . o i . "

79

80 print ('Calculate by Hand Some Vectorizatien')

81 start = time.time ()

82

83 #initialize results array

84 result = np.zeros((numCols, numCols), dtype=flocat)
85

86

87 $ initialize norm arrays list

88 normArrays = []

89

90 # calculatgs arrays and populat norm arrays dict
a1 f in range (numCols) :

92 nermArrays.append(np.zercs ((numReows, 1), dtype=flcat))
93 for j in range (numRows) :

normArrays[i][j]l=fullArray[:, i]l[j]l-np.mean(fullArray[:, 1i])

96 # calculate covariance and populat TESULLS array

a7 Far 4 4n ranmaalinam~Alel -

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5.5 Code changes we need to do...

BEFORE

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5.6 Re-run the test in command line

If the source code is modified within the same module please to this:
Run
python3 1ab3.py somevec 100 1000
Calculate by Hand Some Vectorization
overall runtime =7

Summary:

we identified the slowest line in our “Some Vectorization” covariance matrix
function, and replaced it with a better organized for-loop and vector subtract
method from Numpy*

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Activity 6

Run

python3 1lab3.py morevec 100 1000
Calculate by Hand More Vectorization
overall runtime = 1.182539701461792

Let's make sure it is the best possible performance!

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

& Basic Hotspots Hotspots by cPU Usage viéwpoint (ci'lange) o
4 [collection Log (D Analysis Target A Analysis Type & Summary & Bottom-up @3 Caller/Callee & Top-down Tree < Platform

v)

—r7/

2018
13

Elapsed Time : 1.394s

CPU Time “; 1.380s
Total Thread Count: 1
Paused Time ™: 0Os

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Naive
Elapsed Time

CPU Time
Total Thread Count:
Paused Time

15.432s
15.350s
.
0s

Function Module CPU Time

call_function libpython3.6m.s0.1.0 0.182s
__Gl_fetestexcept libm.so.& 0.164s
PyCFunction_Call libpython3.6m.s0.1.0 0.137s
npy_get_floatstatus umath.cpython-36m-x86_64-linux-gnu.so 0.100s
double_add umath.cpython-36m-x86_64-linux-gnu.so 0.084s

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage val

1400ms -
1200ms

1000ms
800ms

Elapsed Time

600ms 4
400ms
200ms +

Some Vectorization

%) Elapsed Time ":
(3) CPUTime":
Total Thread Count:
Paused Time “:

7.135s
7.120s
1
0s

Target Ut

Oms - T T
0 10 20 30 40

E_Iq

Simultaneously Utilized Logical CPUs

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

50

60

summary

VTUNE is the best tool ever and it now helps with Python code analysis, too!!!

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*
e

backup

Optimization Notice

Copyright © 2017, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Resources

Get Intel’s Distribution for Python:

* Visit https://software.intel.com/en-us/python-distribution for download, documentation
and support

* Also available at Intel channel at Anaconda (you can use “conda install!):
https://anaconda.org/intel

 https://software.intel.com/en-us/vtune-amplifier-help-python-code-analysis

Optimization Notice
Copyright © 2017, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/python-distribution
https://anaconda.org/intel
https://software.intel.com/en-us/vtune-amplifier-help-python-code-analysis

